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Abstract

We present a global, multi-scale model of fluid mixing in laminar flows, which describes the evolution of
the spatial distribution of coarse-grain concentration and interfacial area in a mixture of two fluids with
identical viscosity with no interfacial tension. This results in an efficient computational tool for mixing
analysis, able to evaluate mixing dynamics and identify mixing problems such as dead zones (islands),
applicable to realistic mixing devices. The flow domain is divided into cells, and large-scale variations in
composition are tracked by following the cell-average concentrations of one fluid, using the mapping
method developed previously. Composition fluctuations smaller than the cell size are represented by cell
values of the area tensor which quantifies the amount, shape, and orientation of the interfacial area within
each cell. The method is validated by comparison with an explicit interface tracking calculation. We show
examples for 2D, time-periodic flows in a lid-driven rectangular cavity. The highly non-uniform time
evolution of the spatial distribution of interfacial area can be determined with very low computational
effort. Cell-to-cell differences in interfacial area of three orders of magnitude or more are found. It is well
known that, for globally chaotic flows, the microstructural pattern becomes self-similar, and interfacial area
increases exponentially with time. This behavior is also captured well by the extended mapping method.
The present calculations are 2D, but the method can readily be applied in 3D problems. � 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Laminar chaotic mixing of viscous fluids is fundamentally important, universally practiced, and
has been extensively studied in the last 15–20 years. Yet we lack a general ability to predict the
outcome of any particular realistic mixing operation. Dynamical systems and chaos theories
provide fundamental understanding of the laminar mixing process in terms of Poincar�ee sections,
periodic points, related stable and unstable manifolds, self-similarity and asymptotic direction-
ality (Ottino, 1989; Muzzio et al., 1991, 2000; Meleshko, 1996; Giona et al., 1999). The majority of
the mixing systems analyzed in this way are idealized, relatively simple flows such as the blinking
vortex system (Aref, 1984; Khakhar et al., 1986), the tendril-whorl flow (Aref, 1984), flow between
eccentric cylinders (Aref and Balachandar, 1986; Swanson and Ottino, 1990) and the lid-driven
cavity flow (Liu et al., 1994b; Meleshko and Peters, 1996; Giona et al., 1999).
When looking at more realistic mixing processes, it is desirable to express the dynamics of the

mixing process and state of the mixture in terms of other mixing properties such as distributions
of concentration, residence time and interfacial area. Moreover, there is a strong need for an
efficient method for analyzing realistic mixing processes. Such a method should be able to handle
the geometrical complexity of commercial mixing devices, and assess both short- and long-term
mixing performance. Ultimately, the goal is to be able to optimize any mixing process or device.
A tool that offers many of these features is the mapping method, a scheme whose merits and

limitations have been demonstrated by studying the concentration distribution in the lid-driven
cavity flow (Kruijt, 2000; Kruijt et al., 2001a). The mapping method is based on discretizing the
mixing domain (subdividing the domain into cells) and determining a distribution mapping matrix
related to the discretized space. Determining the mapping matrix can be computationally ex-
pensive; however, once mapping matrix has been composed, the use of the mapping method
requires only modest computational effort. Kruijt et al. (2001c) and Kruijt (2000) show that the
method can treat the dynamics of the concentration distribution in a fully filled co-rotating twin
screw extruder. This extruder problem involves a 3D domain with complex, time-dependent ge-
ometry, and continuous flow through the mixer.
In this paper we extend the mapping method to model the dynamic growth, spatial distribution,

and orientation of the interfacial area during liquid–liquid mixing. Concentration fluctuations on
a scale smaller than the cell size, i.e. the microstructure of the mixture, are represented by an area
tensor (Wetzel and Tucker, 1999), which describes the interfacial area per unit volume and its
orientation. Thus, the method treats the mixing process at multiple length scales, across the entire
mixing domain. The distinction between macrostructural and microstructural features of the
mixture is made at the computational cell size, a dividing line that is arbitrary but convenient.
In this paper we focus on a 2D flow, the lid-driven cavity, but the method is readily generalized

to 3D. The present model is limited to passive mixing, where the two fluids have identical rheology
and zero interfacial tension, and where diffusion is negligible. More complicated models for
droplet dispersions can incorporate the dynamics of deformation, breakup, and coalescence of the
droplets, together with local average concentrations (Peters et al., 2001), and these models are
philosophically similar to the present model.
This paper is organized as follows. Section 2 reviews the main features of the original mapping

calculation and the area tensor. Section 3 then describes the extended mapping method and its
numerical implementation. Section 4 presents results for 2D time-periodic flows in a lid-driven
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cavity. Here we examine flows that are globally chaotic, as well as flows with large regular islands.
The information provided by the extended mapping method is compared to the information
provided by some classical tools of chaos analysis. We also examine self-similarity in the mi-
crostructure in chaotic flows, the spatial distribution of interfacial area growth, and artifacts of
the numerical method. The paper finishes with a discussion and summary.

2. Background

2.1. The mapping method

Consider a batch mixing device that uses a time-periodic flow field. In the original mapping
method (Kruijt et al., 2001a), the flow domain X is divided into N non-overlapping sub-domains
Xi with boundaries oXi. The coarse-grain concentration Ci within each cell is defined as

Ci ¼
1

Xi

Z
Xi

c dXi ð1Þ

and the column vector containing all the cell values at time tk is fCgk. The mapping method
advances these values over large, discrete time steps using a matrix multiplication

Ckþ1
i ¼

XN
j¼1

WijCk
j ; ð2Þ

where ½W�, called the mapping matrix, is constructed using the velocity field in the flow domain and
an accurate adaptive interface tracking algorithm.
To understand the construction of ½W�, consider a 2D cavity flow, where the motion is created

by translating either the upper or the lower surface. The geometry of this flow is shown in Fig. 1.
In Fig. 1(a) we see the initial grid of cells. The cell boundaries oXi are tracked from time tk to
tkþ1 ¼ tk þ Dt using an adaptive interface tracking method (Galaktionov et al., 2000a), to produce
the deformed grid in Fig. 1(b). This deformed grid is then laid over the initial grid, and each

Fig. 1. (a) Geometry of the cavity flow (the side walls are fixed, while the top and bottom walls can translate hori-

zontally) and initial sub-domain discretization (25	 15 grid) in a cavity. (b) Deformed grid after displacing the top wall

by two times its length. During the actual computations a finer grid (200	 120) was used.
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matrix componentWij is computed as the area of overlap between deformed cell j and undeformed
cell i, divided by the total area of cell j:

Wij ¼
Z

Xjjtkþ1\Xijtk

dX

,Z
Xjjtk

dX: ð3Þ

The matrix ½W� can be very large, but it is typically quite sparse, so with careful programming the
multiplications of Eq. (2) can be done quite rapidly. Calculation of the mapping matrix ½W� is an
expensive step. However, this matrix is calculated once, off-line, and the results are stored for later
use.
If each cell contains only one kind of fluid (each Ci equals either 1 or 0), then the results of a

single mapping step are exact. If we think of the two fluids as being black and white, some cells
become gray, because they receive black fluid from some donors and white fluid from others. This
is exactly the physical process we wish to capture at the macroscale. On the second and subse-
quent mapping steps, small errors appear. If a donor cell contains both black and white fluid at
the beginning of the step, the exact solution may be that the black fluid goes to one recipient cell
and the white fluid to another. However, the mapping calculation only knows the average con-
centration in the cell, so it transfers this mixture of black and white fluid to every recipient cell.
This introduces numerical diffusion, providing a second, non-physical mechanism by which the
cell concentrations become more uniform. Numerical diffusion is known to affect the quantitative
results of the mapping method (Kruijt et al., 2001a; Tucker and Peters, submitted), and we will see
that it has a similar effect in the extended mapping method. We minimize numerical diffusion
effects by making the time steps as large as possible. However, if the time step becomes too large,
then ½W� is too expensive to compute, and too densely populated to use effectively.

2.2. Area tensors and their evolution

Interfacial area has long been recognized as an important measure of the fine-scale structure of
a mixture (Spencer and Wiley, 1951; Mohr et al., 1957). Popular measures for lamellar mixtures
are the interfacial area per unit volume SV and the local average striation thickness k. These are
related by

k ¼ 2

SV
: ð4Þ

Neither k nor SV are adequate descriptors for our present purposes, because one cannot calculate
their change for a given deformation without additional information – in this case the orientation
of the interface.
A useful generalization of the interfacial area measure, which includes orientation, is the area

tensor (Wetzel and Tucker, 1999). Consider a small averaging volume V, and let C represent the
interfacial surface lying within this volume (see Fig. 2). Let n denote the unit normal vector for
any incremental area dC.
The second-order area tensor A is defined as

A ¼ 1

V

Z
C
nn dC: ð5Þ
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The components of the area tensor have units of interfacial area per unit volume, or ðlengthÞ�1
and the trace of the tensor equals the total interfacial area per unit volume

trA ¼ SV ; ð6Þ
so trA is a useful scalar measure of microstructural mixing. The averaging volume V should be
large enough to provide a representative sample of the microstructure, but smaller than the scale
over which the microstructure varies. In previous work (Wetzel and Tucker, 1999) this volume
was never chosen explicitly.
The area tensor captures information about the size, shape, and orientation of the micro-

structure. Table 1 shows the area tensors for three particular microstructures. These three ex-
amples are limiting cases, and the area tensor can represent any intermediate structure as well,
such as a group of identical ellipsoidal droplets. The interfacial area of a non-spherical droplet is
distributed non-uniformly in space, and this is captured by the area tensor. The principal axes of
the tensor will also be co-axial with the principal axes of the droplet, so the area tensor describes
the droplet orientation. Any other microstructure that possesses a distinct interface also possesses
an area tensor, so even complex structures like co-continuous morphologies can be represented.
The area tensor, or its isotropic and deviatoric parts, determines the contribution of interfacial

tension to bulk stress (Batchelor, 1970; Onuki, 1987), and has been used as the state variable in
rheological theories of polymer blends (Doi and Ohta, 1991; Grmela and Ait-Kadi, 1998; Wagner
et al., 1999; Peters et al., 2001). Thus, the area tensor has a sound theoretical basis as a micro-
structural variable.
For passive mixing, each part of the interface dC deforms affinely with the material. This can be

used to derive a differential evolution equation for the area tensor (Wetzel and Tucker, 1999):

_AA ¼ �LT  A� A  Lþ L : A: ð7Þ
In this equation the dot indicates a material derivative, and Lij ¼ oui=oxj is the velocity gradient
tensor. A is the fourth-order area tensor, defined as

A ¼ 1

V

Z
C
nnnndC: ð8Þ

This must be replaced by a closure approximation, giving A in terms of A, to have a closed
evolution equation. The simplest example is the quadratic closure (Doi and Ohta, 1991),

A ¼ AA

trA
: ð9Þ

Fig. 2. Averaging volume V, containing the interfacial surface C. For each increment of surface dC the unit normal

vector is n.
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A more accurate closure approximation can be constructed by assuming that the interface was,
at some time, oriented isotropically in space (Wetzel and Tucker, 1999). Subsequent deformations
will produce a distribution of interface orientation equivalent to a set of identical ellipsoidal
droplets. Any set of identical ellipsoidal droplets possesses a unique combination of second- and
fourth-order area tensors A andA. The closure based on this correspondence is called the rational
ellipsoidal (RE) closure because it uses a rational polynomial approximation for the area tensor
components associated with ellipsoidal droplets. Using a closure approximation, Eq. (7) can be
integrated for any type of deformation. When the RE closure is used, the results are extremely
accurate (Wetzel and Tucker, 1999).

3. The extended mapping method

3.1. Area tensor transformation under finite deformation

In the original mapping method, the cell concentrations Ci describe the macrostructure, and we
extend this by adding cell values of the area tensor to represent the microstructure. The mapping
method takes large time steps, and we must develop a computation analogous to Eq. (2) for the
area tensor. The mapping matrix ½W� accounts for advective transport of the microstructure,
corresponding to the material derivative on the left-hand side of Eq. (7). The right-hand side of
that equation represents the stretching and reorientation of area caused by fluid deformation, and

Table 1

Three microstructures and their corresponding area tensors. Adapted from Wetzel and Tucker (1999)
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we must also account for this. Because the time step in the mapping calculation is large, the
differential form of Eq. (7) is not suitable, and we seek an equivalent form for finite deformations.
Consider a material volume, V0 in some reference state, that is transformed by a finite defor-

mation into the material volume V. Let x0 denote the material coordinates, which equal the spatial
coordinates x in the reference configuration. The deformation between V0 and V is described by
the deformation gradient tensor

F ¼ ox

ox0
ð10Þ

and we assume that F is uniform over the material volume V 0.
Let n0 denote the unit vector normal to the interface dC0 in the reference configuration. The

transformations of n0 and dC0 under finite deformation are well known, e.g. (Wetzel and Tucker,
1999)

dC

dC0
¼ detF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FT  F
� ��1

: n0n0
q

; ð11Þ

n ¼ ðF�1ÞT  n0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFT  FÞ�1 : n0n0

q : ð12Þ

Simply substituting these into Eq. (5) gives

A ¼ ðdetFÞðF�1ÞT  1

V

Z
C

n0n0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FT  F
� ��1

: n0n0
q dC0

0
B@

1
CA  F�1: ð13Þ

The right-hand side of this equation cannot be manipulated to contain only F and the area tensor
in the reference state A0, hence there is no universal relationship of the type we seek. Instead, some
approximation is essential.
The approximation used here is based on the same idea as the RE closure: to any area tensor

A and second-phase volume fraction /, there corresponds a unique set of identical ellipsoidal
droplets. The size, shape and orientation of the droplets can be characterized by a droplet shape
tensor G (Wetzel and Tucker, 2001; Wetzel, 1999). This tensor is defined such that, if the center of
the droplet is at the origin, points on the droplet surface satisfy the equation

x G  x ¼ 1: ð14Þ
To obtain the transformation law for G under finite strain we first note that in the reference
configuration the points on the droplet surface satisfy

x0 G0  x0 ¼ 1: ð15Þ
Using Eq. (10) to replace x0 by x, we have, in the deformed configuration,

x  ðF�1ÞT G0  F�1
� �

 x ¼ 1: ð16Þ

Comparing this to Eq. (14) we see that the term in parentheses equals G, so the finite-strain
transformation rule is simply
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G ¼ ðF�1ÞT G0  F�1: ð17Þ
Our route for transforming the area tensor under finite strain is to convert the initial area tensor
A0 to an equivalent droplet shape tensor G0, find G in the deformed state using Eq. (17), and then
transform G back to find the deformed-state area tensor A. As a notational convenience we write
this transformation as

A ¼ A0 � F�1: ð18Þ
The details of the conversion between A and G are shown in Appendix C.

3.2. Algorithm

In the extended mapping method, the cell volume Xi serves as the averaging volume for the area
tensor. For cell i the associated area tensor is

Ai ¼
1

Xi

Z
Ci

nn dC: ð19Þ

Here Ci is the interfacial surface lying within Xi. Because Xi is explicitly chosen and has finite
volume, the cell area tensor Ai is a coarse-grain variable, like Ci.
For each non-zero entry Wij in the mapping matrix, we compute an inverse deformation gra-

dient tensor F�1
ij . This is evaluated at the centroid of Xjjtkþ1 \ Xijtk , the intersection between the

deformed cell j and the undeformed cell i. This computation is carried out off-line, at the same
time the mapping matrix ½W� is being computed, and the results are stored for later use. Appendix
B discusses the details of this computation.
The extended mapping method updates the area tensor at each time step according to

Akþ1
i ¼

XN
j¼1

Wij A
k
j

�
� F�1

ij

�
: ð20Þ

That is, the area tensor in any cell at time k þ 1 is the sum of contributions from all donor cells,
after the donor tensors from time k have been transformed by the appropriate deformation
gradients. Eqs. (20) and (2) constitute one step of the extended mapping method.
The extended mapping method takes advantage of a key characteristic of the area tensor: it is

additive. More precisely, if a domain X is the union of two non-overlapping sub-domains X1 and
X2, and if the area tensors associated with the sub-domains are A1 and A2, then the area tensor for
the whole domain is

A ¼ 1

X

Z
C
nn dC

¼ 1

X1 þ X2

Z
C1

nn dC1

�
þ
Z

C2

nn dC2

�

¼ X1

X1 þ X2

� �
A1 þ

X2

X1 þ X2

� �
A2: ð21Þ
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That is, the area tensor for any domain is the sum of the area tensors its sub-domains, weighted by
the fraction of volume they occupy. This property of the area tensor allows us to sum the con-
tributions from the donor cells in Eq. (20). Other microstructural descriptors, such as the droplet
shape tensor G, do not have this additive property, and cannot be used in the same way.
Eq. (20) assumes that the deformation gradient F�1 is uniform over the intersection between

each deformed and undeformed cell. In general this approximation will be accurate if the cell size
is small enough. In the present calculations, which concern flow in a lid-driven cavity, the ap-
proximation is excellent over most of the flow domain. The largest errors arise when the deformed
cell has passed close to one of the corner singularities during the time step.
To illustrate the magnitude of the errors of the numerical evaluation of F�1, its determinant is

evaluated. The RMS deviation � of the determinant of the deformation gradient from its ideal
value of 1.0 is computed over all intersections of deformed and undeformed cells, for the different
values of dimensionless wall displacement used in this study. These results are summarized in
Table 2. The maximum error occurs, as expected, for the flow with the largest wall displacement,
D ¼ 4. In this case there are a few cell intersections where the deformed cell has traveled close to
both corner singularities. In these (few) cases, detðF�1Þ reaches absolute minimum and maximum
values of 0.9658 and 1.0107, respectively. Note that detðF�1Þ ¼ 1 is a necessary, but not sufficient,
condition for accurate computation of the deformation gradient tensor.
Since advection of the microstructure is handled the same way as advection of the concen-

tration, it will be subject to the same type of numerical diffusion. We will explore the nature and
magnitude of this error in the calculations.

3.3. Implementation

In this paper we study the 2D time-periodic Stokes flow in a lid-driven cavity, as shown in Fig.
1. Many aspects of this flow have been studied, both theoretically and experimentally (Chien et al.,
1986; Leong and Ottino, 1989; Ottino, 1989; Liu et al., 1994b,a; Meleshko and Peters, 1996;
Giona et al., 1999; Kruijt et al., 2001a). We use the same geometry as many of these other studies,
with a width to height ratio of 5:3.
In the present study we focus on the TB (top/bottom) protocol, originally considered by

Franjione et al. (1989). Each period consists of two steps: first the top wall moves to the right, then
the bottom wall moves to the left by the same amount. The displacement during of one step,
scaled by the half-width of the cavity h (see Fig. 1), is denoted by D. The displacement of one wall
during a period characterizes a particular protocol.
We use a semi-analytical solution for the velocity field (Meleshko, 1996; Meleshko and Go-

milko, 1997). This solution is computationally efficient and gives accurate results in the whole
domain, including the neighborhood of the corners.

Table 2

RMS deviation � of detðF�1Þ from unity, for different values of dimensionless wall displacement D

D 0.25 0.5 1.0 2.0 4.0

� 5:54	 10�7 1:11	 10�6 2:05	 10�6 6:11	 10�6 1:38	 10�4
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For the mapping calculations, a grid of 120	 200 rectangular cells covers the interior of the
cavity. The interior cells extend from �0:995h < x < 0:995h and �0:999 < y < 0:999, leaving a
single, very thin cell around the boundary. This boundary cell reduces computational expense, by
avoiding the necessity to track points that pass very close to the corner singularities. When
plotting results we show only the 24,000 interior cells, but when computing total quantities for the
entire cavity we include the boundary cell.
There is no difficulty computing Wij for the boundary cell, so mapping of the concentrations

proceeds using Eq. (2) for all cells. The area tensors for all interior cells are updated using Eq.
(20). However, we cannot compute F�1

ij for material that enters or leaves the boundary cell, so
special treatment is required. When the boundary cell is a recipient, we use F�1

ij ¼ I (the identity
tensor), which transports interfacial area but ignores its stretching and reorientation. Since the
correct orientation of interfaces leaving the boundary cell is not known, a reasonable option is to
imply that the material coming from the boundary cell has an isotropic area tensor. To achieve
this, after each mapping step, the area tensor corresponding to the boundary cell is symmetrized
(replaced by an isotropic tensor with an equal trace). When the boundary cell is a donor, we again
use the assumption F�1

ij ¼ I. Thus, recipient inner cell receives an isotropic contribution to its area
tensor from the boundary cell. Numerical experiments show that this treatment of the boundary
cell has a negligible effect on the overall results.
The mapping components Wij and the deformation measures F�1

ij are computed using an
adaptive interface tracking scheme (Galaktionov et al., 2000a) for D ¼ 0:25, 0.5, 1, 2, and 4. This
allows us to model any flow in which the wall motion is an integer multiple of 0.25, by using
multiple mapping steps to simulate a single step of wall motion. Motion of the bottom wall is
treated using the symmetry of the flow, rather than by generating new mapping matrices and
deformation tensors.
The computation of Wij and F

�1
ij is quite involved, and took approximately 10 h on 14 pro-

cessors (R10K) using SGI Origin200 trademark workstations. However, once this data is com-
puted and stored, the mapping calculations are quite rapid. Each simulation shown here requires
but a few minutes on a single-processor workstation. A single matrix-vector multiplication, to-
gether with the corresponding area tensor transformations, require between 3 and 5 s on a single
CPU. This makes the extended mapping method very useful for exploring the effects of different
mixing protocols, or different initial configurations of the fluids.

4. Results

4.1. Comparison to interface tracking

To test the accuracy of the extended mapping method, we compare its results to an explicit
interface tracking calculation (Galaktionov et al., 2000a). Such comparisons are only possible in
the initial stage of mixing, when the tracking calculation is still affordable. Here we consider the
TB protocol with D ¼ 6:25. The cavity is initially filled with white fluid, and a small rectangular
blob of black marker fluid is placed around a hyperbolic (unstable) periodic point. The initial
location of this blob is indicated by the dashed line in Figs. 3(a) and (b). The boundary of the blob
was tracked for five periods of the flow (Dtot ¼ 62:5). The tracking results were then superimposed
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on the grid used by the mapping calculation, and used to calculate cell concentrations and cell
area tensors. This provides a nearly exact result, against which the mapping results can be com-
pared. In the initial condition for mapping, only the cells containing the blob had non-zero
concentrations, and only cells containing the blob boundary had non-zero area tensors.
The results are compared in Fig. 3. The concentration distribution obtained by mapping,

though influenced by numerical diffusion, closely matches the tracking results. A careful exam-
ination of Figs. 3(a) and (b) suggests that the numerical diffusion spreads the material more in the
direction of local stretching, since sharp folds in the material are more elongated in the mapping
result. Figs. 3(c) and (d) show the spatial distribution of the trace of area tensor, which measures

Fig. 3. Comparison of interface tracking (left) and mapping (right) results for advection of initially rectangular blob

(indicated by the dashed line). Results for five periods of the TB protocol with D ¼ 6:25: (a,b) concentration distri-

bution (coarse grain density); (c,d) trace of the area tensor; (e,f) Ayy component of the area tensor.
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the interfacial area per unit volume in each cell. Again, the mapping results are in good agreement
with interface tracking. These figures are similar in appearance to the concentration patterns,
mainly because there can only be interfacial area in a cell that contains some marker fluid. Values
for the Ayy component of the area tensor are compared in Figs. 3(e) and (f), and again the
comparison is good. Plotting Ayy emphasizes interfaces that are nearly horizontal, i.e., their
normals point in the y direction. These figures look much like the figures for trA, with the hor-
izontal streaks selected. This tells us that the interfaces are predominantly parallel to the material
streaks. The comparisons for other components of the area tensor are quite similar, and are not
shown here. A close match on all components of the area tensor indicate that the mapping method
has correctly found the orientation of the interfaces, as well as their magnitude. Both mapping
and tracking indicate that the distribution of interfacial area over the flow domain is noticeably
less uniform than the concentration distribution, even at this early stage of mixing.
As a more quantitative measure, we can compare the total interfacial length L for the two

methods. This is available directly for the interface tracking method, and for the mapping method
it is simply the sum of the interfacial area among all the cells, L ¼

PN
i ðtrAiÞXi. In this particular

case, when the marker fluid was initially centered around a hyperbolic point, the mapping ap-
proach describes the interfacial area generation quite accurately: L ¼ 1231:5 for interface tracking
and 1278.6 for mapping, a difference of less than 3.7%. Note that this corresponds to stretching
the initial interface by a factor of 925.4. We will see later that for arbitrary initial conditions the
extended mapping method tends to overestimate the interfacial area, while predicting well its
relative distribution.

4.2. Examples

To demonstrate the extended mapping approach we consider two mixing flows described by the
same TB protocol but with different wall displacements. The flow with the dimensionless dis-
placement D ¼ 8 has a large island, while the flow with D ¼ 16 can, for present purposes, be
regarded as globally chaotic. Figs. 4(a) and (b) show the results of the analysis using the tradi-
tional tool of Poincar�ee maps which are used here for comparison.
Note that both Poincar�ee maps reveal the zones of chaotic mixing, where material is being

stretched exponentially with time, and Fig. 4(a) shows zones of regular motion, where stretching
is at best linear. However the Poincar�ee maps do not provide information on the actual concen-
tration and amount of stretching, nor on the rate of change of these quantities.
Figs. 4(c) and (d) show the concentration distributions created by these two flows after eight

periods for D ¼ 8, and four periods for D ¼ 16, as predicted by the original mapping method. The
cavity is initially filled with white fluid in the left half and black fluid in the right half (this is the
case in all further results unless stated otherwise). Different numbers of periods are used for
the two protocols, so that both flows will have the same energy input, which is proportional to
total wall displacement. The influence of the island is clearly visible for D ¼ 8, while for D ¼ 16
the mixture is much more uniform.
Figs. 5(a), (c), and (e) show how mixing progresses with time for D ¼ 16. For this chaotic

protocol, the striation thickness of the emerging lamellar mixture pattern quickly become too fine
to resolve with the basic mapping technique. Intrinsic numerical errors, caused by averaging on
the cell scale at every mapping step, also tend to erase the fine structure of the mixture. As a result,

508 O.S. Galaktionov et al. / International Journal of Multiphase Flow 28 (2002) 497–523



after only a few periods the computed concentration distribution is nearly uniform (Fig. 5(e)).
This is a desirable mixing result on the macroscale, but in Fig. 5(e) the pattern of cell concen-
trations no longer reveals anything useful about the state of the mixture.
The extended mapping method compensates for this loss of information by tracking the mi-

crostructure within each cell. These results are shown in Figs. 5(b), (d) and (f). Here we show the
values of logðtrAÞ within each cell, for different times during the mixing process. A logarithmic
scale is used because the area tensor distribution is very non-uniform. (Zero values of trA, present
in the initial stage of mixing, are replaced by a small fictitious constant to permit the logarithmic
plot.) Although the concentration distribution quickly becomes nearly uniform, the microstruc-
ture continues to evolve as mixing proceeds. In addition, the mixture remains highly structured at
the microscale, and the interface distribution is highly non-uniform.

4.3. Self-similarity of the microstructure

For the globally chaotic flow shown in Fig. 5, a self-similar pattern of interface distribution is
established after a few periods. This behavior is well known for this type of flow and has been
studied extensively by others (Muzzio et al., 1991; Alvarez et al., 1998; Giona et al., 1999, 2000).
Here we want to show that the extended mapping method captures this behavior quite well. The
pattern is maintained for all subsequent mixing, while the average value of the trace of the area
tensor grows exponentially. Thus, Figs. 5(d) and (f) are identical in appearance, though the two

Fig. 4. Comparison of two flows with the TB protocol but different dimensionless wall displacement. The left column

corresponds to the flow with D ¼ 8, the right to the flow with D ¼ 16: (a,b) Poincar�ee maps; (c,d) concentration dis-

tributions obtained using the mapping technique, after eight periods of the D ¼ 8 flow and four periods of D ¼ 16 flow,

respectively.
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Fig. 5. (a–f) Evolution of concentration (left) and trace of the area tensor (right) distributions in the flow described by

protocol TB with dimensionless displacement D ¼ 16. Marker fluid initially fills the left half of the cavity. The results

are shown after 2, 4, and 8 periods of the flow. (g,h): Similar to (c) and (d), but marker fluid initially fills the lower half

of the cavity.
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figures use different scales for their grey level maps. The pattern after only two periods, Fig. 5(b),
is only slightly different from the self-similar pattern in Figs. 5(d) and (f).
For a globally chaotic flow, this self-similar pattern of the interface distribution is also inde-

pendent of the initial configuration of the mixture. Figs. 5(g) and (h) show the distributions of
concentration and of trA after four periods of the same flow, but for a different initial condition.
Here the dark fluid initially occupies the lower half of the cavity, and the initial interface is
horizontal. Although the concentration pattern in Fig. 5(g) is slightly different from Fig. 5(c), the
interface distribution in Fig. 5(h) is identical to Fig. 5(d). The average value of trA in Fig. 5(h) is
slightly higher than in the previous case, because the initial interface was longer.
This self-similarity of the interface distribution shows itself clearly in the statistics for the

distribution of trA. Similar to the results of Liu et al. (1994b) for stretching statistics, and fol-
lowing Muzzio et al. (1991), we plot the probability density Hn as a function of logðtrAÞ. This is
computed as

HnðlogðtrAÞÞ ¼
dN logðtrAÞð Þ
d logðtrAÞ : ð22Þ

Here dNðlogðtrAÞÞ is the number of cells with area tensor values in the range ½logðtrAÞ; logðtrAÞþ
d logðtrAÞ�.
Fig. 6 shows Hn computed after different numbers of periods for the TB flows, with D ¼ 8 and

D ¼ 16. In both cases the marker fluid initially filled the left half of the cavity. For the flow with
D ¼ 8, all curves in Fig. 6(a) show a long ‘‘tail’’ on the left, in the region of low values of trA. This
tail corresponds to the large island in this flow, where interface generation is linear with time. The
sharp peak at the left end of the curve represents the cells that contain no interface. (To allow
logarithmic plots, values of trA that are smaller than one were replaced by one). The head of the
curve, which corresponds to the region of chaotic mixing, quickly becomes self-similar, and the
growth of interface in these cells is exponential with time.
The plots of Hn for the globally chaotic flow, with D ¼ 16, are presented in Fig. 6(b). The

number of periods for each curve is half the number for D ¼ 8 flow, so the energy inputs are the
same between Fig. 6(a) and (b). For this globally chaotic flow the curves do not have tails at low
trA, and the curves rapidly become self-similar. Despite the presence of a large island in the flow
with D ¼ 8, the values of logðtrAÞ achieved in the head of the distribution curve for D ¼ 8 are
higher than for the globally chaotic flow, with D ¼ 16. However, the global properties of a
mixture are usually governed by the location with the worst mixing, and in this respect the
globally chaotic flow is far superior.
Once the self-similar pattern of microstructure is established, the amount of interfacial area

grows exponentially. This is illustrated by the solid curve in Fig. 7. At each step during the cal-
culation we find the total amount of interface in the entire mixture, computed as the sum over all
cells of trA times the cell volume, normalized by the initial value. This is plotted in the figure as a
function of the total wall displacement, for the chaotic flow (D ¼ 16). After the first period, the
curve rises exponentially (becomes a straight line on this log/linear plot). Superimposed on this
exponential rise is a ripple with half the period of the flow; this simply indicates that the growth of
interface takes place non-uniformly over time within each period. The different curves in Fig. 7
correspond to calculations with different size mapping steps. This discrepancy in the interfacial
area growth prediction is discussed in Section 4.5.
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While the magnitude of the interfacial area grows exponentially for chaotic flows, the orien-
tation and ‘‘shape’’ of the microstructure in each cell is periodic, and returns to a fixed value after
each period of motion. Fig. 8 shows these orientation patterns for our two example flows. The
length of each short dash is proportional to the difference between the maximum and minimum
eigenvalues of ÂA � A=trA, and the direction of the dash is perpendicular to the eigenvector as-
sociated with the largest eigenvalue. Thus, long dashes represent lamellar structures with the layer
surfaces running parallel to the dash, while short dashes represent zones within which the in-
terfaces are curved. Each dash in these figures represents the average area tensor is a square
window of 4	 4 cells. This makes the results easier to see, though it does suppress some of the
fine-scale information present in the data.
In Fig. 8 the orientation patterns are overlaid on the concentration distributions. It is apparent

that both mixtures are, by this point, primarily lamellar in structure, and that the lamellae in each
cell are oriented parallel to the streaks of fluid we see in the concentration patterns. Only a few
cells, where the interfaces are folded with a radius of a few cell sizes or less, contain interfaces with
different orientations, and appear as dots or very short dashes. Comparing Fig. 8(b) to Fig. 5(f)
shows that, for the chaotic flow, the directionality of the microstructure also follows the shape of
the streaks of high and low interfacial area. Note that this periodic orientation pattern for the
microstructure also develops in the D ¼ 8 flow, even though this flow has large regular islands.

4.4. Rate of interfacial area growth

We already examined the global rate of growth of interfacial area for a chaotic flow in Fig. 7.
However, the extended mapping method can provide a more detailed analysis that reveals the
spatial distribution of area stretching rates. Here we take advantage of the periodicity of the flow,
and calculate the stretching for one period of the flow. This is done by providing an initial
condition in which the trace of the initial area tensor A0 equals unity for every cell, and then
running the calculation for one period. The amount of stretching in each cell is computed as

Fig. 6. Statistics of the interface distribution: HnðlogðtrAÞÞ for the TB flows with D ¼ 8 (a) and D ¼ 16 (b). The number

of periods t=T is noted near each curve.
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s ¼ trA=trA0. Thus, the stretch s is any cell is the factor by which the interfacial area increases
during one period, for material that resides in that cell at the end of the period.
The orientation of the initial microstructure also affects the results, and here we examine two

possibilities. The first is an isotropic initial state in every cell. This could occur, for instance, if the
initial mixture consisted of small spherical droplets that were evenly distributed throughout the
cavity. Results for this initial condition give an idea of which parts of the fluid experience large or
small amounts of stretching during one period. The second possibility, which we call an oriented
initial state, uses the interfacial orientation pattern created by the periodic flow. To create this
initial condition we run the calculation for enough cycles to create a self-similar orientation
pattern like those shown in Fig. 8, then normalize the orientation tensor in each cell so that it has
unit trace. Calculating one additional period with this initial condition provide the values of s for
the oriented initial state.
Fig. 9 shows the one-period stretching distributions for the flow with D ¼ 8. The stretch values

vary widely across the cavity, and we plot log s to make the smaller values more visible. For the
isotropic initial pattern, Fig. 9(a), we have log sP 0 (or sP 1) in every cell. This behavior is

Fig. 7. The evolution of total interface length L=L0, computed for the flow with protocol TB and dimensionless

displacement D ¼ 16, using different size mapping steps.

Fig. 8. Orientation patterns created by TB flows: (a) D ¼ 8, background gray level corresponds to the concentration

distribution after eight periods; (b) D ¼ 16, background gray level corresponds to the concentration distribution after

four periods.
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guaranteed, since there is no way to deform a region with isotropically distributed interfaces
without stretching the interface. However, some cells in Fig. 9(a) stretch by less than 1%, while
others stretch to more than 200 times their original value. Not surprisingly, the large island in this
flow is a region with very little stretching. However, there are other regions of low stretching that
exist as thin streaks, immediately adjacent to regions of very high stretch.
When the calculation is repeated with an oriented initial state, we find large stretching values in

essentially the same places, but we also find significant regions where s < 1, or log s < 0. These are
outlined in white in Fig. 9(b). This might be called microstructural demixing. In these cells the
interfaces have less area than they did at the beginning of the period. Demixing occurs when the
initial interface is oriented unfavorably with respect to the deformation, and is only possible when
the initial microstructure has some preferred orientation. The island contains some of these areas,
but others exist in the chaotic region of the flow.
The stretching results for the globally chaotic flow, with D ¼ 16, are shown in Fig. 10. The

results are similar to the previous figure, with a wide range of values present, and thin streaks of
low stretching lying alongside streaks of high stretching. In comparing Fig. 10(a) with the con-
centration pattern, Fig. 4(d), we see that the areas of small stretching are precisely the areas where
striations are still visible in the concentration pattern after four periods.
For the oriented initial pattern in Fig. 10(b) the areas with s < 1 are smaller than in the other

flow, but demixing is still present. This raises an interesting question: if the one-period dynamics
shows some demixing, why do the statistics for Hn in Fig. 6(b) show that the amount of interface
in every cell increases for every period? The answer is that area growth depends on transport as
well as stretching. Once the chaotic flow has established its self-similar pattern, material arriving
in the ‘‘demixing’’ zones already has a higher-than average amount of interfacial area. The
amount of demixing is less than the stretching that occurs elsewhere, and in the next period this
material moves to some other location and experiences an increase in interfacial area. In calcu-
lations for time-periodic flows between eccentric cylinders, as studied by Muzzio et al. (1991) and
Giona et al. (1999), we have detected even stronger demixing zones, where the interfacial area
decreased by factors as large as 6–9 in a single period (Anderson et al., to appear). Interestingly,
the flow with the largest contraction of area and the largest demixing zones showed the highest
average stretching.

Fig. 9. One-period stretching distributions for D ¼ 8: (a) for an isotropic initial pattern ð0:0014 < log s < 2:432Þ; (b) for
an oriented initial pattern ð�0:902 < log s < 2:031Þ.
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4.5. Artifacts of the numerical method

The verification example presented at the beginning of this section showed that the extended
mapping method somewhat overestimated the length of the interface. Furthermore, the results of
Fig. 7 show that the calculated interfacial area in fact depends on the size of the mapping step
used in the calculation. In this figure the total interface length in the cavity is plotted as a function
of total displacement of the moving walls, but the three different curves accomplish this dis-
placement using different mapping data. For instance, the curve labelled D ¼ 4 accomplishes the
total displacement of the top wall, D ¼ 16, using four mapping steps, while the curve labelled
D ¼ 1 uses 16 mapping steps with a different mapping matrix and F�1

ij values to reach the same
point. All three curves show an exponential rise in the interfacial area after the first period, but the
rise rate increases as the size of the individual mapping steps decreases.
This over-prediction of interfacial area growth is closely related to the presence of the corner

singularities in the velocity field. Although we do not cover the thin outer layer with the sub-
domain grid, the deformation of material travelling close to the corner point is overestimated. The
averaging in the long thin ‘‘boundary cell’’ (see Section 3.3) amplifies the effect. In calculations on
physically realizable flows without singularities in the velocity field (Anderson et al., to appear), we
find that length of the mapping step has a negligible influence on the predicted interfacial area
growth.
The effect of ‘‘numerical diffusion’’ mentioned in Section 2.1, caused by the averaging process

within each cell, can be demonstrated by transporting the concentration only, using Eq. (2). Fig.
11 shows one example. We consider a square domain, divided into 50	 50 cells. The initial
pattern is white with a black vertical strip, one cell wide, in the center (Fig. 11(a)).
We first subject this to a horizontal translation, with a displacement of one half cell per

mapping step. Fig. 11(b) shows the concentration pattern after three mapping steps. The strip of
black fluid has translated, but has also become wider and more diffuse. Executing the reverse
mapping on this pattern does not recover the initial state in Fig. 11(a), but gives Fig. 11(c), which
is considerably more diffuse. Fig. 11(c) shows the spread in concentration of this recovered pat-
tern. It also shows that the same calculation with five times more mapping steps gives yet more
diffusion.

Fig. 10. One-period stretching distributions for D ¼ 16: (a) for an isotropic initial pattern ð0:0016 < log s < 2:801Þ;
(b) for an oriented initial pattern ð�0:631 < log s < 2:471Þ.
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Note that this example is the worst case, since translating the pattern by integer number of cell
sizes does not introduce any numerical diffusion. The numerical diffusion primarily spreads the
mapped quantity (e.g., concentration) in the direction of the flow. In this example the non-zero
concentration remains confined to the horizontal band of cells that contains the initial strip. (This
band is marked with dashed lines in the figure.) However, if the flow direction is not aligned along
the rows or columns of cells, the concentration will also spread sideways.
While the extended mapping method tends to over-predict the total interfacial area, the spatial

distribution of interface within the cavity (i.e., the locations of the maxima and minima of trA) are
essentially independent of the size of the mapping step. Similarly, the pattern of spatial orientation
is not greatly affected by the size of the mapping step.
Numerical artifacts can be minimized by using large-displacement mapping steps. However, the

cost of the interface tracking calculation, which is used to find the mapping matrix ½W� and the F�1
ij

values, grows exponentially with the size of the mapping step. Thus, it is not possible to use
mapping steps that are much larger than the ones used here.

5. Summary

We have developed a simulation of laminar mixing that is global, in the sense that it treats the
entire mixture, and that represents both the macroscopic and the microscopic aspects of mixing.

Fig. 11. Numerical artifacts of mapping demonstrated in a translational flow: (a) initial configuration, with vertical

strip of marker fluid; (b) strip after three mappings, each corresponding to a translation of one half cell to the right; (c)

recovery of the vertical strip by backward mapping. Thick line shows the concentration profile across the strip. Thin

line shows the concentration profile for the strip recovered for an initial mapping that is five times larger.
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At the macroscopic level one is concerned primarily with achieving an even distribution of the
components throughout the mixture, and we track this using cell-average values of concentration.
At the microscopic level the primary interest is the creation of a desirable microstructure, and this
is followed by calculating an area tensor for each cell. The area tensor can represent the quantity,
shape, and orientation of the interfaces contained within a cell, so it provides a useful tool for
treating sub-grid scale information in laminar mixing.
The strength of the extended mapping method is that it models mixing directly. One can specify

the initial configuration of the two fluids, subject them to a prescribed amount of mixing, and
predict the concentration and microstructure distributions at every point in the resulting mixture.
Thus, there is no need to resort to any correlation between properties of the flow and properties of
the mixture. The extended mapping method correctly reflects the spatial self-similarity and ex-
ponential interface growth that occurs at long times in chaotic flows, but it can also predict short-
time behavior of chaotic flows, as well as the mixing in regular regions.
We can contrast this to various tools that have been used to analyze laminar mixing. Total

strain, or total work done on the fluid, is one of the oldest measures of mixing, but it ignores
important factors: the orientation of the interfaces relative to the deformation, the initial con-
figuration of the fluids, and the possibility of regular islands in the flow. The two TB cavity flows
examined here were compared at identical values of total strain, but provided very different
mixing results. Poincar�ee maps reveal regular islands and chaotic regions, but do not provide any
information about interfacial area or stretching. Periodic point analysis will locate the points of
greatest and least stretching efficiency (the hyperbolic and elliptic points, respectively), but one
gains insight primarily into the local behavior around these points. Stretching distributions
provide information that is much closer to our microstructural results, but they are not usually
computed for a practical initial condition, and they do not treat the distributive aspects of mixing.
The extended mapping calculation provides a complete treatment of mixing, focusing on the
information needed to select mixing devices and design mixing processes.
The extended mapping method can readily be applied to 3D flows, unstructured grids, and

flows of generalized Newtonian fluids (Anderson et al., 2000, to appear; Galaktionov et al., 2001,
2000b; Kruijt et al., 2001b,c). However, mixtures of fluids with unequal viscosities, interfacial
tension, viscoelastic properties, or diffusing and reacting species cannot be treated rigorously,
unless one makes some significant extensions or alterations to the method. We expect these
phenomena can be incorporated into global, multi-scale models of mixing, albeit with more
complex models and different numerical methods.
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Appendix A. Intersecting areas of enclosed polygons

To compute the elements of the mapping matrix, we must compute the intersections between
the deformed sub-domains, which were tracked in the flow, and the grid of initial sub-domains.
The boundaries of both deformed and undeformed sub-domains are represented by closed poly-
gons. Mathematically, the problem is reduced to finding the intersection of the areas enclosed by
two polygons.
In this work we use a simple and general algorithm, which is able to find these intersection areas

exactly. The only essential requirement is that each polygon be closed and not self-intersecting.
This will always be true if each polygon is the boundary of a material domain. Fig. 12 illustrates
the steps of the algorithm.
First, we find all intersections of the edges of the first polygon with edges of the second polygon.

At these points, additional vertices are added to both polygons, splitting these edges. Now the
modified polygons intersect only at their vertices (see Fig. 12(b)). Second, the boundary of the
intersection area is formed as shown in Fig. 12(c). The edges of the intersection area are the edges
from the first modified polygon that are located inside the second polygon, and the edges of the
second polygon that are located inside the first polygon. Because the polygons now intersect only
at their vertices, once can easily decide if certain edge lies inside another polygon by checking its
midpoint. The intersection between two polygons can, in general, consist of non-connected parts,
as illustrated in Fig. 12(c). Our algorithm handles these cases correctly. However, in mapping
computations the sub-domains are usually small, so multi-part intersections are rare.

Appendix B. Numerical evaluation of F�1

The extended mapping technique requires us to find the deformation gradient tensor relating
the original and deformed configurations, for the material in any deformed cell that intersects an
undeformed cell. The intersecting area is represented by a closed polygon, as described in Ap-
pendix A. To begin, the position p00 of the center of mass of this intersection is calculated. We
assume that the cells are sufficiently small that the deformation of all the material within the cell
can be described by the value at the center of mass. To evaluate the deformation gradient, the
point p00ðx00; y00Þ is surrounded by the cross-like stencil of four points, shifted along the x- or y-axis
by a small distance d : p01ðx00 þ d; y 00Þ, p02ðx00; y 00 þ dÞ, p03ðx00 � d; y00Þ, p04ðx00; y00 � dÞ. Next, these points
are tracked in from t ¼ t0 þ Dt back to their initial positions p1ðx1; y1Þ, p2ðx2; y2Þ, p3ðx3; y3Þ,

Fig. 12. Finding the intersection of the area enclosed by two closed polygons: (a) initial polygons; (b) extra vertices are

added where the polygons intersect, splitting these sides; (c) the boundary of the intersecting area is then determined.
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p4ðx4; y4Þ at t ¼ t0, using the kinematics of the flow field (Fig. 13). Finally, the components of the
inverse deformation gradient tensor F�1 are evaluated using a central finite difference scheme:

F�1 ¼
ox
ox0

ox
oy0

oy
ox0

oy
oy0

 !
�

x1�x3
x0
1
�x0

3

x2�x4
y0
2
�y0

4

y1�y3
x0
1
�x0

3

y2�y4
y0
2
�y0

4

0
@

1
A ¼ 1

2d

x1 � x3 x2 � x4
y1 � y3 y2 � y4

� �
: ðB:1Þ

This procedure is carried out for each non-zero entry Wij in the mapping matrix, producing the
values F�1

ij .

Appendix C. Converting between area tensors and droplet shape tensors

To transform the area tensor under finite strain, we must convert from the area tensor to the
shape tensor for equivalent ellipsoidal droplets, and back again. This appendix shows the details
of that conversion.
With the area tensor, the length scale of the microstructure is determined by the trace of the

tensor, which equals the interfacial area per unit volume SV (Eq. (6)). The ‘‘shape’’ of the tensor is
described by the normalized area tensor ÂA, defined as

ÂA � A

SV
: ðC:1Þ

The droplet shape tensor G, defined in Eq. (14), describes the shape and size of identical ellipsoidal
droplets. Initially we choose coordinate axes that coincide with the symmetry axes of the ellipsoid.
These are the eigenvectors of the tensor G. Let the semi-axes of the droplet be a, b, and c, with
aP bP c. We number the axes so that the droplet shape tensor is

G ¼
1=c2 0 0
0 1=b2 0
0 0 1=a2

2
4

3
5: ðC:2Þ

The shape of the droplet is described by the two axis ratios

C ¼ c
a
; D ¼ c

b
: ðC:3Þ

Fig. 13. Numerical evaluation of F�1: the points of a cross-shaped stencil are tracked from time t ¼ t0 þ Dt back
to t ¼ t0.
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Note that both C and D 2 ½0; 1�. Once C and D are known, the droplet size is determined by
specifying c.
One can establish the correspondence between A and G for ellipsoidal droplets by evaluating

the integral in Eq. (5) over the surface of an ellipsoid. The two tensors are coaxial, so if the shape
tensor is diagonal as in Eq. (C.2), the area tensor will also be diagonal.
The normalized area tensor ÂA depends only on the axis ratios C and D, and the exact rela-

tionships have been derived by Wetzel and Tucker (1999) and Wetzel (1999). They are

ÂA11 ¼
1

1� D2

Eðh; kÞ � D2F ðh; kÞ
ð1� C2ÞEðh; kÞ þ C2F ðh; kÞ þ CD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p ; ðC:4Þ

ÂA22 ¼
D2

D2 � C2

	 fðD2 � C2Þ=ð1� D2ÞgF ðh; kÞ � D2fð1� C2Þ=ð1� D2ÞgEðh; kÞ þ CD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p

ð1� C2ÞEðh; kÞ þ C2F ðh; kÞ þ CD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p ;

ðC:5Þ

ÂA33 ¼
C2

D2 � C2

C2Eðh; kÞ þ ðD2 � C2ÞF ðh; kÞ � CD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p

ð1� C2ÞEðh; kÞ þ C2F ðh; kÞ þ CD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p ; ðC:6Þ

where F ðh; kÞ and Eðh; kÞ are the Legendre elliptic integrals of the first and second kind, respec-
tively (Gradshteyn and Ryzhik, 1994), and k and h are

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

1� C2

r
; h ¼ cos�1ðCÞ: ðC:7Þ

These exact relationships cannot be inverted analytically, and an iterative numerical procedure
is required. As an alternative, Wetzel and Tucker (1999) found that these relationships are well
approximated by

C ffi ÂA33
ÂA11

 !a

; D ffi ÂA22
ÂA11

 !a

ðC:8Þ

with a ¼ 0:5977. The semi-axis ratio values from this approximation are exact for the limiting
cases of uniaxial, biaxial, and isotropic tensors, and they fall within 0.04 of the exact values for all
other ellipsoidal shapes. Eqs. (C.8) can be inverted analytically, to give

ÂA11 ffi
1

ðc=aÞ1=a þ ðc=bÞ1=a þ ðc=cÞ1=a
¼ 1

ðCÞ1=a þ ðDÞ1=a þ 1
; ðC:9Þ

ÂA22 ffi
1

ðb=aÞ1=a þ ðb=bÞ1=a þ ðb=cÞ1=a
¼ 1

ðC=DÞ1=a þ 1þ ð1=DÞ1=a
; ðC:10Þ

ÂA33 ffi
1

ða=aÞ1=a þ ða=bÞ1=a þ ða=cÞ1=a
¼ 1� ÂA11 � ÂA22: ðC:11Þ

This is the form used for the calculations in this paper. By definition ÂA11 þ ÂA22 þ ÂA33 ¼ 1, so there
are only two independent eigenvalues of the normalized area tensor. Either Eqs. (C.4)–(C.6) or
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Eqs. (C.8)–(C.11) provide the mapping between the axis ratios C and D and these two compo-
nents.
To complete the relationship, we must also relate the ‘‘sizes’’ of the two tensors. This is de-

termined from the surface area to volume ratio. The volume of the ellipsoid is

Ve ¼
4

3
pabc ðC:12Þ

while its exact surface area is

Se ¼ 2pc2 1

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p

CD
Eðh; kÞ þ C

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p F ðh; kÞ
!
: ðC:13Þ

A convenient approximation to the surface area that avoids the elliptic integral functions F and
E is (Lehmer, 1950)

Se ffi 4pab
2

5

C þ Dþ 1

3

 
þ 3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ D2 þ 1

3

r !
: ðC:14Þ

If the ellipsoidal droplets occupy a fraction / of the mixture volume, then their surface area per
unit total volume is

SV ¼ /Se
Ve

: ðC:15Þ

Substituting the exact area formula (C.13) and the volume (C.12), we find

SV ¼ 3/c
2ab

1

"
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p

CD
Eðh; kÞ þ C

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p F ðh; kÞ
#
: ðC:16Þ

For numerical calculations it is useful to rearrange this formula as

SV ¼ 3/
2c

CD
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
Eðh; kÞ þ C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
p F ðh; kÞ

�
: ðC:17Þ

This handles the case where a ! 1 and C ! 0 smoothly, and also has no problems if in addition
b ! 1 and D ! 0.
Alternately, one can use the approximate area formula (C.14), in which case

SV ffi /
c

2

5
ðC

�
þ Dþ 1Þ þ 3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðC2 þ D2 þ 1Þ

p �
: ðC:18Þ

In either case we have a direct relationship between SV and c.
We now have all the pieces needed transform between the area tensor and the droplet shape

tensor. To go from G to A the algorithm is:

(i) Find the eigenvalues and eigenvectors of G. The eigenvalues give a, b, and c according to Eq.
(C.2). Normalize the eigenvectors and use them to form the rotation matrix R between the prin-
cipal axes and the laboratory axes. Compute C and D from Eq. (C.3).
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(ii) Determine the principal components of the normalized area tensor ÂA, using either the exact
relations (C.4)–(C.6) or the approximate relations (C.9)–(C.11).
(iii) Determine SV using either the exact formula (C.16) or the approximate formula (C.18).
(iv) Compute the area tensor in its principal coordinates using Eq. (C.1), i.e. A ¼ SV ÂA.
(v) Use R from the first step to rotate A back to the laboratory axis system.

The reverse transformation, from A to G, follows a similar pattern. If the exact shape formulae
(C.4)–(C.6) are used, then an iterative numerical procedure is required to find C and D. The
approximate formulae can be used to provide a close initial guess, after which a Newton–Raphson
iteration should converge without difficulty.
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